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Abstract

Conditions are investigated for exponential convergence of the tracking error in fecdfor-
ward adaptive systems without persistent excitation. Particular attention is paid to the
continuous-time LMS algorithm in the overpararnetl  ized case. A main result is that for
a bounded periodic regressor, the tracking error COIJVt3r&S  exponentially without regard
to parameter convergence or to the degree of overp~ ra,rnetrization.  These results remove
the persistent excitation (PE) conditions and parameter convergence conditions previously
thought necessary to ensure  exponential tracking crro~ convergence in this class of systems,

1 Introduction

Persistent excitation (PE) conditions which ensure  pam.rneter  convergence in adaptive al-
gorithms have been studied by many researchers. Early results can be found in Astrom and
Bohlin [I] where the PE condition is expressed in terms of positive definiteness of the au-
tocorrelation  function formed from the regressor, Subsequently, Bitmcad  and Anderson [4]
proved that parameter convergence is exponential  when PE conditions are satisfied in the
least-mean square (LMS)  algorithm and the normalized LMS algorithms. Explicit upper
and lower bounds on the exponential response can bc found in [1 1]. A general discussion
of the PE condition is given in [3] and an effort to unify many clefinitions  can be found in
[13].

One important consequence of exponential parameter convergence, is that the tracking
error (which is linear in the parameter error) also converges exponentially, This relation-
ship gives the (false) impression that exponential tracking error convergence requires the
same stringent PE conditions as parameter converge) ice. Interestingly, there are several
..— ——.——.
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indications to the contrary. For example, using an approximate linear analysis, Glover [6]
indicated as early as 1977 that exponential convergence of the tracking error is possible in
the feedforward adaptive LMS algorithm with tap delay line basis functions, and sinusoidal
excitation, without any conditions on parameter convergence,

Motivated by Glover, this paper investigates exponential ccmvergence  of the tracking
error, without regard to parameter convergence. A n min result of the paper is that for a
bounded periodic regressor, the tracking error converges exponentially without any PE con-
dition. This result is important, because in many ap~dications  goc)d  tracking performance
is required while it is not desirable or even possible to satisfy PE conditions [10].

In Section 2 the LMS adaptive algorithm is reviewed in a continuous-time setting,
Convergence properties are reviewed in Section 3 and IIew results pertaining to exponential
tracking error convergence are presented. In Section  4, exponential convergence results
are specialized to the important case of a tap-delay line bmis, The analytic convergence
bounds are validated by a simulation example, and arc shown to be consistent with earlier
exponential convergence bounds of Glover [6].

2 LMS Algorithm

In this section, the Least Mean Square (LMS)  algorithm [12] is reviewed. The algorithm is
presented in a continuous-time framework, consistent with the treatment found in [9].

Let the y(t) E ltl and z(t) c RN, be known  signals and assume there exists a constant
parameter vector wo G RN such that,

y(t)  = w%(t) (1)

for all t >0. Uniqueness of w“ is not required (i.e., t}le system ca~l be overparametrized).
An estimate ~ of y is constructed as,

(2)

where w(t)  is an estimate of w“, tuned in real-time using the continuous-time LMS algo-
rithm,

ti = pz(t)e(t) (3)

with adaptation gain p > 0. The tracking error is clefined  as,

e(t) = y(t) – ~(t) (4)

and the parameter error is clefined as,

~(i) = w“ - w(t) (5)
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Using (l)(2)(4)(5), the tracking and parameter errors

e = ~~x(t)

Assuming that the true parameter w“ dow not vary
from (3)(5) that,

can be related as follows,

(6)

with time, (i. e., W“ = O), it follows

cj = ti)” -- w = –pze (7)

This equation characterizes the propagation of the parameter error.

3 Exponential Convergence Properties

It is convenient at this point to review a well-known stability argument. Define the Lya-
punov function candidate,

v = ;qFd (8)

Taking the derivative of (8) and using (l)-(7) yields,

v= –pefA1’x  := –p$e2 <0 (9)

This proves that q! remains bounded. If x is tmunded,  then fr?m (6) the error e remains
bounded. Furthermore, if i is bcmnded, then V is bounded, V is uniformly continuous,
and Barbalat’s  lemma ([9], pg. 85, and 276), can be applied to ensure that lim~+m e = 0.
This well known argument ensures that the er]or converges to zero as desired.

While the above argument ensures that e converges to zerc),  it does not indicate how fad
it converges. Additional conditions can be imposed wl~ich  ensure exponential convergence
of e to zero, For example, if z(t) is a periodic function with period TO, then it is well known
(cf., [9]), that the existence of some/3> O such that,

~.I<M ( lo )

M= # JTOx(t)x(t)’dt
o

(11)

ensures that the error converges exponentially with rate /i’, i.e., there  exists a co z O such
that,

It is shown in this paper that the PE condition (1 O) is overly restrictive, Specifically,
the main result proves that for x bounded and periodic, the ccmvcrgence  of e to zero is
generically exponential without any condition on M, ~’his result is most useful in applica-
tions where performance is measured based on the convergence properties of e rather than
on +, It will be seen that in the overpararnetrized
error still converges exponentially even though the

3
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THEOREM 1 Assume there exists a w“ such that (1) holds for all t ~ O, and that the
LMS algorithm (2)-(7) is used to tune w. Let z(t) ~ RN be a bounded periodic function
of t z O, with period TO, i.e.,

11~(~)11 S q < m; for all tz O (13)

Z(t + To) = z(t);  for all t >0 (14)

Then the error e in (6) converges to zero exponentially as,

le(~)l S woTOl[#(0)llc-@’ (15)

@ ~ pA,,(M) (16)

(17)

where An denotes the smallest positive  eigenvalue  of the symmetric non-negative definite
matrix M = MT ~ 0, Such a smallest positive cigenvzdue always exists unless x s O, e s O,
i,c,, the regressor z and error e vanish identically.

PROOF: First consider the trivial case where M = 0. Then from (17), z = O, and from
(6) the error e vanishes identically.

Now consider the nontrivial case where M + 0. IO om (6)(7), cnle has,

j ~ –pxe = –PzxTq$  = A(i)+ (18)

where A(t) = –pxzT. Equation (18) is a time-varying linear system, with the matrix-
cxponcntial  solution [5],

~(t)  = ef~ ‘(T)~’~(0) (19)

Since x is periodic with period TO it follows that,

T.
M=;3-~ [ 1AII o ~1xx7’dr = p

o 0 0
(20)

All = diag{~l,...,~~}  >0 (21)

where P1’ = P-l, and, Al > . . . ~ ~. >0. Note. that A,, is the smallest “nonzero”  eigenvalue
of M, and that it will always exist since M # O. Define the change of variable,

Then,

z == PTZ

,>

/

Jo
; ~TO z,zTdT = PT(:. I [

All O
To O

xzTd7 )P = o 0
0
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Let z be partitioned as,

z(t) == [ 1Zl(t)
Zz(t  )

‘-n, Then it follows from (23) that,where z] E E’ and 22 ~ R

1 To.—
J2-0 0

Z 1 z?(I7- = Al l  >  0

(24)

(25)

and,
Zz(t)  = o (26)

Hence, z(t) is of the form,

[ 1
z~ (t)

z(t) == o (27)

Define,

r(t) S ST1’~~(t) (28)

[1s= 1; ~ ~,Nxr, (29)

where Inn is the n x n identity matrix and 0 E Iil(N--nJxtN-nl  is a matrix containing all zeros,
It is seen that the matrix S simply “sifts out” the first n elements of F’y’qi  for inclusion into
r,

Writing the error equation (6) in terms of the reduced vectors ZI in (27) and r in (28)
yields,

e  = ~TX = ~TPPTx = &Pz == +TPSZ1  -= rl’z~ (30)

Similarly, the adaptation law (7) can be written in terms of the reduced vectors as,

Expanding the adaptation lZLW (31), using (30) gives,

+= –pzle == –pzlzf r (32)

Using (25), equation (32) is seen as a time-varying linear system with matrix exponential
solution [5],

k TO

r(kTO)  = e -P Jo +7,.(0) (33)

= e–pkTbA1l  r(0) == diag{e-Y~1k7”,  ,,,, e-p~”kT”}r(0) (34)

Using (13)(34) in (30) yields,

/c(kTO)l = lr(kTO)Tzl(kTO)/  = /r(())qe-  “T~A1121(kTO)/  < qllr(())lle-fl~m’~o (35)
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This implies that the error dies exponentially on the discrete-tirnc grid kTO, k = 0,.,,, cm,
It only remains to show that the convergence is exponential on the continuous-time interval
i e [0,00).

It follows from (32) that I \r(t)l I is nonincreasing, Hence, using (34) one has,

where a ~ p~~. The inequality t < (k+ l)TO also im~]lies  that t -TO < kTo, which leads to
the relation,

-akTo < ee _ -cr(t-To) = ~CYT.  e-d for i ~ [I&, (k -I- 1 )TO] (37)

Combining (36) and (37) gives,

Ilr(i!)ll < eaTOllr(0)llc-@t (38)

The following bounds will also be useful,

Ipfo)[[ = [lsw~$+(o)ll  < ll~(o)ll (39)

Ip,ll = 11211 = Ilz]l < q (40)

Substituting (38)(39)(40) into (30) yields upoII  rearranging,

REMARK 1 Theorem 1 says that for bouncled periodic z, the error c is either identically
zero, or it converges to zero exponentially fast. There are no other possibilities. Interest-
ingly, the result is independent of the number of parameters IV, as long as a solution to”
exists in (1). Note that the usual PE requirement for at least N/2 sinusoids in the regressor
is avoided.

REMARK 2 Persistent excitation conditions are e] iminated in Theorem 1 by avoiding
the need for convergence of the full parameter vector v) in the proof, Rather, the ‘(degree”
to which the given regressor z is persistently exciting is indicated by the number n of
nonzero eigcnvalues of Al. This is used to define an appropriately reduced parameter error
vector r e Ii?”. It can be seen from (38) that the recluced vector r converges exponentially,
which from (41 ) ensures exponential convergence of e.



4 Tap-Delay Line Basis

In this section, the results of Section 3 are specialized to the case of a tap delay line basis.

Let the components of the regressor x = [xl, ,.., x~]~  E RN be defined by filtering a
signal ~(t) E RI through a tap delay line with N taps and tap delay T, i.e.,

Let the measured signal (

xl  =  ~-(l-l)m (, l= 1,...,  N (42)

be given by the following sum of m sinusoids,

((t) = ~AiSi72(#it. + ~i) (43)
isl

Note that (43) represents a slight generalization of the. earlier formulation to include ape-
riodic signals, As such, the following general clefinitiou  for the ccwariance  will be used,

(44)

For the specird  case of periodic signals, M - in (44) and &f in (17) are identical.

By direct integration, the correlation matrix M- (44) can be calculated in closed form
as,

[I cos~i  T cos 2w, T . . . COS(N – 1 )tiiT
1 cos~i T . . . COS(N – 2)wiT

“ . “ . “o

1 COS(N  _ l)~iT .os(N - 2)~iT . . . ~os~iT I

The following factorization of M will be useful.
-.—.

(45)

LEMMA 1 (Outer-Product Factorization) ]Jd the ] egressor x := [xl, . . . . XN]T c RN k
the LMS algorithm (l)-(7) be obtained by filteling  ( E RI through the tap delay line (42),
with N taps and tap delay T. Let ~ be given as the su~n of sinusoids,

where,
m s N/2
O  <  Ai<~ for i = 1,..,,  m
O < wiT <~, for i z 1,..., m (47)

Ui # Wj, fori~j
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Then,

(i) The covariance ~ defined in (44) can be written in terms of the outer-product factor-
ization,

~ ~ JIF~ ~ ~~NxN

where the square-root factor F is given by,

F = CA g RNX27’L

cqc*,  sl, . . ..c.r,, sm] c RNx2m

i

o “ . ‘ .A4;2 : ‘.: “.: o /
~ ~,2mx2rTL

o .,, 0 Am ~ 122

where 122 denotes the 2 x 2 identity matrix,

(48)

(49)

(50)

E RN (51)

(52)

(ii) The rank of ~, C and I’ are the same and equal to 2m,

PROOF: Because of the Toeplitz structure of M, the {j, k}th entry  of the ith term in-——

the sum (45), denoted as ~(i)j~,  can be writtml as

~(i)jk  =  COS(lj  – IkIf,di!l’) = COS((j
 -  

1)0;  -  (k  –  l)ti~)

= Cos((j –  
l)b.~i)COS((k  -  l)Ldi) +- Si’Tl((j  –  l)fJ.)i)Si7Z((k  –  I)Ldi)

(53)
Substituting (53) into (45) gives upon rearrmging,

The vector outer-product sum (54) can be put into matrix form ass,

(54)

M-= CAACT = FF7’
(55)

which proves (i).
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Let C. be the matrix constructed from the top 2?n  rows of C. Then,

[1 cosw~ T , , . COS(2???. –  l.) LOi?’ ]

!:GoswiT 1 .‘.
c8@’ =

1

E R2”bx2m (56)
“. “.. COSWi2!’

cos(2m  - -  l)tiiT , . , <:os~iT 1

The matrix (56) is found to arise in optimal experiment design, and has the known deter-
minant (cf., [8], page 140),

de_t{C,C~}  = Am(m-l) El Si9Z2(WkT) ‘~] fi (~os(wi7)) - ~os(wjT))4 (57)
i=] j=i+ 1

For distinct frequencies ~i # wj, and O < wiT < n, monotonicity  of COS(V) over the interval
O < v < n ensures that the determinant (57) cloes  nc)t vanish, and t}lat Ca is nonsingular,
It can be concluded that rank of C is full (i.e., equal to 2rn) since its tc]p  2m rows forms the
square nonsingular matrix C$, Furthermore, Ai > (), i = 1, ,,,, nL by ~sumption,  so that
A > 0 is nonsingular. Hence, the rank of C arid F = ~ CA arc identical and equal to 2m,
Finally, it can be concluded that the rank of ‘M is 2m since by (55) it has F’ as a full rank
outer-product factor. This proves (ii). ■

Lemma 1 implies that J4 (which is of size. N x N), will have rank 2m, For the case
---

where 2m = N, the covariance ~ is nonsingular and the usual P12 ccmditions  are satisfied to
ensure exponential convergence of both @ and c to zero, In contrast, in the overparametrized
case where 2m < N, the covariance ~ is singular, the PE conditions no longer hold, and ~
no longer converges exponentially. However, one may still resort to Theorem 1 to conclude
exponential convergence of e. The overparametrized case will bc tl cated along these lines
in the next result.

THEOREM 2 Let z E @’, f E R* be as defined in Lemma 1 using the LMS algorithm
(l)-(7) and the tap delay line basis (42) with N taps and tap delay T’, Furthermore, let
f(t) be periodic with period TO,  Then the tracking error e converges exponentially fast,

with rate,
@ =  /.lArnifl(.F~F)  >  () (59)

where Amirl  denotes the smallest eigenvalue of the %IJEX product” I’Y’F, and F = CA is
the square-root factor of A4 == ~ defined in Lemma 1.

PROOF: The regressor z(t) is periodic since it is obtained in (42) by filtering ~(t) which is
periodic, For periodic x, the covariance M in (17) is equivalent to hf in (44). Hence, from
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Lemma 1, result (ii), the covariance A4 has I ank 2m, Accordingly, the smallest nonzero
eigcnvalue  of M is Azm(M),  whcxe  ~] > . . . z ~z~ > 0 denotes the nonzero eigenvalues
ordered by size.

Since the regressor z(i!) is bounded and periodic, it satisfies the conditions of Theorem
1. Hence, an exponential bcmnd on the error is given as,

I o ~ p~2m(M) (61)

It is known from Lemma 1 that M admits the outer-~  )roduct factorization,

I M = FF7’ (62)

I However, it is also known (cf., [7]), that the nonzero eigenva.lum  of a symmetric inner
product F~3’ and symmetric outer product FF’T are the same, Hence,

I A2m(M) =: &@’FT) = A2.,(FTF) := &@TF) >0 (63)

Using (63) in (60)(61) gives (58)(59) as desired, ■

From the above analysis, it is worth noting that (for the tap-delay line basis), positive
definiteness of the outer p~oduci  M = FFT is required for exponential convergence of both
~ and e (i.e., the usual PE condition), while only positive definiteness of the inner product
F’~F  is required for exponential convergence of e. The inner prcduct  condition is weaker
(i.e,, easier to satisfy) since %-n< N without PE, and F’ will be a “tall”  matrix. Theorem
2 gives specific conditions for which the inner ~u-oduct  condition is satisfied, and provides
bounds on the exponential convergence rate.

REMARK 3 As in Theorem 1, the exponential convergence argument in Theorem 2 is
independent of the number cjf sinusoids m in the excitation signal f, A colorful example
will be given in Section 5 where 50 taps are used to track 2 sinusoids.

REMARK 4 In Lemma 1 and Theorem 2, tile condition that the frequencies wi in the
excitation signal ~ be less than n/!i”,  is required to ensure that the rank of M is exactly
2m. However, this condition can be thought of in ter]ns of the usual Nyquist Sampling
Theorem, where the tap delay T plays the role of a sampling period, and the effective
sampling frequency 27r/T must exceed any signal frequency Wa by at least a factor of 2.
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5 Numerical Example

An example is given in this section demonstrating ex])onential tracking error convergence
without persistent excitation. Specifically, N = 50 parameters (i, c., taps) will be used to
track m = 2 sinusoids. (Note that to ensure pa.rarnetel  convergcllcc,  the PE condition (10)
would require at least 25 sinusoids).

Let y be a sum of two tones,

y=

where WI =2~.25,  ti2=2~”50,  and

Sin(qi) +- Sin(qt) (64)

let the excitation signal ~ be given as,

~ = Alsin(qt – 7r/4) + Azsin(u~t  - 7r/4) (65)

where Al = AZ = W. Let the. tap delay line b~is discussed in Section 4 be heavily
overparametrized with N = 50 taps and tap delay 2’ = .004. The LMS algorithm (l)-(7)
is used to tune the error to zero, using an adaptive gain of p = ,1, A simulation of the
response is shown as the solid line in Figure 1.

Tracking error: True (solid), Theoretical (dashed)
~,~r_... . _ .  – — — .

“ - — - - - -  ‘ -  ‘“–--– 7--” ‘“” ‘ r  ‘ - ”  n

~ \
\\
\

1.5

1

0.5

0

-0.5 -

-1

-1.5

—..-——

–—— .–.-—–—–_—–  J — . – —  —  .  .  .  — J . . - - — .  J.&.
o 0.5 1 1.5 2 2.5 3

Time (sees)

Figure 1: Exponential tracking error response fronl LMS algorithm with heavily over-
pararnetrized tap delay line (N == 50 taps and m := 2 sinuscjids).
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The exponential convergence rate from Theorem 2 is calculated as a = 2.5000, and the
theoretical bound on e is shown as the dotted line in Figure 1. It is seen that the theoretical
exponential overbound on the response is quite accurate.

In a 1977 paper [6], Glcwer  studies the mapping from y to e in the LMS algorithm
with a tap delay line basis. Glover argues that for a sufficiently large  number of taps, this
mapping can be approximated as the linear time-invariant systeln,  (specialized here to the
case of two tones),

(s’ + 0;)(s’ + u:)—- —-. —.. —

(
—, Y (66)

e = 
(s’+ w:)(s2 + ;;) + 1$ A;(s3  -t- W:S) + A;(s3  i- @s)

)

Note the nice interpretation of (66) as a stable double notch filter at ~mecisely  the frequencies
of the disturbance. For the present example the closed-loop poles we located at, (–2.4992*
314.10j),  (–2.5008+157.09j).  Hence, Glover’s approxilnate  analysis predicts an exponential
mnvergence  with a rate which is determined by the real part --2.4992 of the least damped
pole, or equivalently a = 2.4992. This value agrees quite well with the value @ = 2.5000
determined using the exact analysis of Theorem 2, which in turn agrees  very well with the
simulation results.

6 Conclusions

This paper considers exponential convergence of the tracking error  in the feedforward adap-
tive LMS algorithm. It is shown (i.e., Theorem 1) that for a bcmnded  periodic regressor,
the tracking error converges exponentially without regard to parameter convergence or the
degree of overparametrization.

llmults  are specialized to the tap-delay line basis (i.e., Theorem 2), giving rise to specific
conditions for exponential convergence and bouncb  (m the c.cmvcrgence  rate. The new
analytic convergence bounds are validated by a simulation example, and are shown to
closely match the convergence rates predicted by an earlier approximate linear analysis due
to Glover. Hence, the specialization of the new theol  y to the tap-delay line case acts to
corroborate earlier evidence, and provide a precise theoretical basis for Glover’s  work.

The main result is relevent  to applications where fast tracking error convergence is
desired, Applications include adaptive vibration cla.nlping, feedforward neural networks,
acoustic noise canceling, and adaptive feedforward control of narrowband signals.

In the present paper, the assumption that the x egressor x is periodic is somewhat
restrictive. Future efforts will be aimed  at relaxing this condition to include almost-periodic
functions and possibly more generalized signals such m the Yuan- Wonham class [13].
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